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Propagation of an envelope soliton in a medium with spatially varying dispersion
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We study analytically and numerically the motion of a nonlinear Schrodinger soliton in a medium with
spatially modulated dispersion. The cases of periodic and random modulations of the dispersive term are
considered. In the former, numerical simulations for small velocities show a good agreement with the adiabatic
equations. When the velocity is increased the soliton emits linear waves and we calculate their spectral density
and show the existence of a resonant condition connecting the amplitude and velocity of the soliton to the
wavelength of the modulation. The important application of steering a spatial soliton in an array of tunnel
coupled planar waveguides with variable coupling is considd®t063-651X97)08104-X]

PACS numbes): 03.40.Kf, 05.40+j, 66.90+r, 42.25-p.

I. INTRODUCTION tions of dispersion are considered. In Sec. Il the adiabatic
dynamics of solitons in the medium with a periodic variation

Recently some authors have investigated the dynamics ¢ff dispersion is considered, phase portraits, fixed point
an envelope soliton in a medium with a time-dependent disanalysis and comparison with the full numerics for the partial
persion[1—3]. This connects with the important application differential equation(PDE) are performed. Section IIl de-
of soliton propagation in optical fibers and in optical loop scribes the adiabatic dynamics of a soliton in a medium with
devices. The dynamics of a single soliton in a medium witha randomly fluctuating dispersion for short times, and pre-
a periodic and random variation of dispersi@m nonlinear- ~ sents the behavior of the mean values of the soliton param-
ity) has been studied.,2] and the resonant emission of soli- eters. In Sec. IV the radiative processes of solitons connected
ton and radiative damping has been estimated. This is impowith propagation for large velocity are studied for the peri-
tant for understanding the motion of a soliton in a fiberodic modulation case, the spectral density of emission is
optical loop with variable dispersion. For chirped pulses, thound together with a resonant condition. In Sec. V we con-
case of a dispersion periodically modulated in time was consider the physical application of this model to the propaga-
sidered in3] using a variational approach. In some cases théion of spatial optical solitons in arrays of planar nonlinear
width grows to infinity, indicating a destruction of the pulse. optical waveguides with variable coupling.
Recently the influence of a strong temporal dispersive
S-like perturbation on a soliton propagating in an optical 1. ADIABATIC DYNAMICS OF NLS SOLITON IN THE
fiber has been studied j#]. In the case of the propagation of ~ MEDIUM WITH THE PERIODICALLY MODULATED
spatial optical solitons it is important to study the influence DISPERSION
of a spatial variation of the dispersion. Such types of prob-
lems appear, for example, when studying the propagation o
a soliton beam in an array of planar optical waveguides with,. X . . e
variable coupling[5,7]. Th%s S)F/)stem hss attracteéJ attention d'spefs'on- The problem is described by a modified NLS
recently because of its importance for all optical processing‘?quat'on
It is important to note that in the linear limit, it can exhibit
localization as in the Anderson or Lifschitz models if the

dependence that is random is the refraction index or the sepgr which the dispersion term is modulated in space. In real
ration between waveguidef5]. An array of nonlinear physical situations we must add other terms sucN@su
waveguides seems to be a unique system for the observatigig V,u, (see Sec. ¥ The linear potential casé(x)u has

of the competition between nonlinearity and disorder and th¢yeen considered by Scharf and Bishidil. Here we will
experimental observation of the influence of the nonlinearitystydy the simple model given by E€).

on AnderSOI’l |0ca|izati0n. Usua”y the StatiC disorder induced Let us Consider the propagation in SUCh a medium Of the
by the linear random potential is studied. An equally impor-gingle soliton solution
tant interest for soliton perturbation theory is to investigate

We will study in this work the nonlinear Schiimger
NLS) soliton dynamics in media with spatially changing

iU+ Ugy+ 2| ul2u=V(X)Uyy, )

the influence of random dispersive perturbations. Taking into us(x,t)=2i psecliz)exp(—iy), 2
account these facts, in this work we perform an analytical
and numerical investigation of the influence of a spatial Y=2&x+ ¢,  Pp=4(E— 9, ®)
modulation of the dispersion on the process of envelope soli-
ton propagation. The cases of periodic and random modula- z=27n(Xx—{), (=-—4¢&t. (4)
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AssumingV(x) = esin(ax), whereL =27 /a is the period of because the term in the brackets is always strictly positive
dispersion modulation, and applying the equations of thavhene<1. Thus the fixed points of the systei@)—(7) are
adiabatic approximatiofi8,9], we obtain the following sys- such that

tem of equations for the amplitude, velocity &, the center
of the soliton¢, and phasep, correspondingly:

dy wea’fcogal)

£&=0 anda’=87n> or 52%“(%' (13

dt  sinh(waldy) ' ®) wherek is an integer. For these two sets of fixed points the
Jacobian matrix is singular so that nothing can be said about
dé malen |1 a?\| ¢ the stability by considering the linearized system. Numerical
dt _ 2sini(maldz)|3 1 872 7 cogal), results indicate, however, that both sets of fixed points are
(6)  unstable.

It is important to notice that the perturbation on the right-
dg maesin(al) hand side(rhs) of Eq. (1) does not allow the conservation
=4l i == |ul? -
dt 2ysini( wal47) of the number of particles N=/”_|u[°dx, mo

mentum  P=(i/2)[”_(u,u* —ufu)dx, or energy
ma ma E=/"_(Jul*—|u,/?dx. Following the method suggested by
X 1_5““ 4_77 ' () Karpman[11], one can find the evolution of these quantities
under the action of the perturbation.
mraesin(a a2
d_¢: 4(52 772) 2 : n( /g) 2 2 dN * *
t nsinh(maldn) | 125 Gr = 2€ | Vum(uguydx, (14)
Ll &£ ma wa® “_<7Ta
T 27 &, om.3)cotn — dp ©
70 Om 9% \A7 a=ef_mvxlux|2dx, (15
malelcogal) | & @
" 2psini(maiay) | 22 82 dE_ (=
) a=4ef V|ul2Im(u,u*)dx, (16)

These equations are complicated to analyze so we first . .
q P y We have compared the evolution of the soliton parameters

consider the case of small velociti€g~ €. In that approxi- in the adiabatic approximation given by Eq8)—(8) with

mation one can then neglect the variation of amplitude witt} . ; ;
: _ - _ the full numerical solution of the PDB), which was solved
time and let=5,. Then from Eqs(5)~(8) one can sepa using a method of lines in which the space derivative is

rate the equatpns for the velocigyand the coordinate of the discretized using finite differences with Dirichlet boundary
soliton centerZ: o . .o .
conditions, and the solution advanced in time by an ordinary

dé malen ( a2 differential equation solver: we have used the variable step

_—=— 1——2) cogal), (99  Runge-Kutta method of order 5 frofil2]. Results were

dt  6sinf(mal4n) 87 checked by monitoring the evolution of the number of par-
dz ticles, momentum, and energy as defined above and compar-
a:_45_ (10) ing their numerically computed derivatives with the right-

hand sides in the formula$14)—(16), in all cases the
agreement was better than 0.005 in relative difference. We
also checked the results by doubling the number of grid
points. The soliton parametersand { were then estimated
d2¢ , by Ieast-sqyares fitting the mpdulqs of f[he numerically com-
W+ wgsin(ad)=0, (11 putgd solution by the expression given in E2). £ was then
estimated from Eq(4).
which is the equation of a pendulum with a frequency given Figure 1 shows the time evolution gfand{ for the PDE
by as a solid line and for the adiabatic equations as a dashed line
for a=1 and a soliton with =1 with initial position
2 {o=10m, for which sin@y)=0 and zero initial velocity.
1_8_1;2>' This initial condition is such that the perturbation is zero
initially. This is important because if the perturbation is not
This shows that the soliton is oscillating slowly in the effec-zero fort=0, the initial condition should be modified to take
tive potential well with the frequencywy~exp(—mal/dn) into account the new balance between dispersion and nonlin-
[10,6]. The effective potential is exponentially small for the earity. Figure 1 shows an excellent agreementfshowing
broad solitons for whichra/4n>1. that the soliton is oscillating in the potential well with a
Let us find the fixed points from the syste—(8). We  period of about 41.6, which is slighly larger than the period
will not consider Eq.(8) which is uncoupled from the sys- derived from Eq(12) because of the variation of. There is
tem. It can be seen that the condition thf/dt=0 is é&=0 a 2% relative mismatch forp between the PDE and

Changing variables by— ¢+ w/2a,t—t\/a we have from
Egs.(9) and(10)

5 2mwaen ( (12

“0™ 3sin waldy)
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0.500 ¥«

32.0

e 30.0 FIG. 3. Profile of|u| (x,t) for a soliton propagating in a me-
dium with random dispersion. The parameters are0.1,
b8 0 70=0.5, £,=0.05, {o= 10
0 50 100 _ o
t the parameters of the soliton initially areyy=0.5,

{o=10m, and £3=0.05. It can be seen that the pulse first

FIG. 1. Time evolution ofy (top) and{ (bottom for the PDE  moves toward=0 and then back toward the large values of
(solid line) and the adiabatic equatiofdashed ling The values of thjs is due to the soliton encountering a potential barrier it
the parameters ara=1, €=0.1 and the initial conditions are ~3nnot overcome. At the end of the paper we will calculate
70=0.5,{o=10m, and§,=0. the average pinning potential for a soliton in an array of

the adiabatic formulas. Indeed we have found that the randomly coupled waveguides.

. . . For a large number of realizations one can examine the
estimated from the PDE is consistently smaller than the ON8verage of the soliton parameters. For this we chose the pa-
pre_ohctgd by the adiabatic equations Wh_en the mOdUIat'o?ametersn():O.S,e=0.1 and small velocities for the soliton
pequ IS I;irghe con:rp])arer(]j to the tSO!ItOﬂ W'déh‘ for th £0,=0.05 and¢;=0.15. A common feature of these two sets

Iguré = shows the phase por raitg, {) an (¢.£) for the ._of experiments is that the average valuerptaries by less
PDE and adiabatic equations corresponding to the evolutlolfhan 1% over the time interval considered30). The time

described in Fig. 1. The analogy with the pendulum phase\'/ariations of(¢) and(£) are presented in Fig. 4 from top to

space is clear from thef(£) phase-portrait where the central bottom. 400 realizations were necessary for the average

fixed point has been represented. value of the velocity £) to reach a stationary value within a
few percent. The picture shows th@f) follows an almost
We will consider in this section the propagation of spatial(¢)= ~4(&t+{o while (£) decreases by about 10% and
solitons in a medium with random spatial dispersion in the€Xhibits oscillations of period about 10. Let us show that
direction of propagation. For that we have modelediith a ~ SOMe Of these results can be explained with the help of the
random function uniformly distributed betweenl and+1  adiabatic equations for the soliton parameters
[13] multiplied by a given amplitude factor. Figure 3 shows

a soliton moving in one realization of the random potential dn S [+ s z
for different times. The amplitude of the potential is 0.1 and ot 8€én | coshztantzV EJFZ dz, (17
32.0 60
At
s 30.0 — 55— —
\4
e 50 ‘ ‘
28.0
0.500 n 0.550 0.0500

0.10 |

-0.10 |
28.0 30.0 32.0

e 0.0450 ‘

20
t

30

¢ FIG. 4. Time evolution of(¢) (top) and{¢) (bottom) for the
PDE solution. The average was done on 400 realizations. The val-
FIG. 2. Phase portraitsz({) (top) and (,£) (bottom) for the ues of the parameters awe=0.1 and the initial conditions are

PDE and adiabatic evolutions corresponding to Fig. 1.

Moo= 05, {0: 10’7T, and 50: 005
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FIG. 5. Same as Fig. 4 except that the initial velocity is

&=0.15.

d¢ Y [ z
a=4enf cosh ?z(— 1+ 2tantfz)tantz V| E?Jrg dz

—oc0

+o0 Z
—45527;] cosh 2ztantz V Z+§ dz, (18
a_ 4¢+4 jw t2ztante V| = d
T E+4deé . zcosh “ztan Z-ﬁ-g Z
(19

The numerical results show that can be assumed to be

constant so that using the change of varialdesz/2 n+ ¢
the system reduces to the two equations

d te
S=aert [ Voorg2moe oox

— o0

—aey | Vogdane- ol (@0
s
a=—4§+0(6), (21

where fy(z)=cosh?z(—1+2tanif)tantze  and g.(2)

X

FIG. 6. Profile of|u| as a function ofx for different times
t=10 (top), t=20 (middle), t=30 (bottom corresponding to Fig. 1.
V(x) has been drawn as dashed lines and shifted vertically for
clarity.

about 1%. Note that the behavior ¢fis again given by
()= —&KEt+ L.

To conclude, it seems that the decay of the velocity of the
soliton for small velocity is a resonant effect. To study a
simpler situation we now consider the emission of linear
waves by the soliton in the case of a periodic modulation of
the dispersion. We will find a resonance condition connect-
ing the soliton parameters with the wave length of the modu-
lation. This resonance condition explains many numerical
results obtained previously by other authors.

IV. THE EMISSION OF WAVES BY SOLITONS IN A
MEDIUM WITH A PERIODICALLY MODULATED
DISPERSION

Together with the adiabatic dynamics, which is the cor-
rection to the discrete spectrum of the associated linear spec-
tral problem due to the perturbation, the correction to the
continuum part of spectrum also gives a contribution to the
solution. This continuum correction gives two kinds of con-
tributions: the first one corresponds to the correction local-
ized on the soliton and is responsible for the reconstruction

=cosh ?ztantz The second equation gives by averaging theof the soliton profile while the second represents an oscillat-

evolution of () ()(t)=—4(&)t+ ¢p, which is the result
observed in the numerical simulations. Eet30 this is ver-

fied with a 3% relative error.

ing field that has a part corresponding to the emission of
linear waves by the soliton. Below we find both parts using
the perturbation theory based on the inverse scattering trans-

The evolution of¢ is complicated: the first term on the rhs form[8,9,13.

of Eg. (20) can be averaged out assuming thais constant

Let us calculate initially the correction localized on the

but the second term cannot be computed because of the prégliton duj.c. According to[8] the asymptotic behavior of
ence of¢. Therefore we do not have at this time an analyticSUioc is defined by the expression

estimate of the evolution df¢). The range of this evolution
is much smaller if the initial velocity&, is larger
(£0=0.15) as shown in Fig. 5 where the decreas¢®fis

. ezexp—2) (=
Wioe= 39 773 B

o

for z—+ and

Rex;{—z’—iéz’—m
n

OUoc= 20 W XP( — i 4h),

where

+R*ex;{z+i%z’+i5 sechz')dz' (22
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ez’exp(z) (=

Wioe(Z) T T secliz’)dz’ (23

+R*exr<—z’+i%z’+i5)

Rex;{z’—iéz’—ia
—» n

for z——o and whereR= —iV(X)uy,= —isin@xu,, and §=—¢—2¢&{+ /2. Substituting into Eqs(22) and (23) the
expression for the perturbation

2

V(X) Uy, = esin(ax)8i n°sectz| 1— % —2secl(z)+2i %tanr( 2) lexp(—iy), (24)

we find for the asymptotic behavior of the localized correction|fhe 1
2

2 2 2
ez°-maccoqdal)exp —z) & | 28 2/ a
Wi o(2)~ »— —1-=+i|-—+ 5l —==+1]|{, (25
16%n“sinh(ral4 n) 7 n 3\ 167y
2 2 2 2
N ez°maccoqal)exp(z) & | 28 2 a
Wi D= 16, Zsintimaiay) | LT 2T T 5 TEle2 T 26
|
The adiabatic evolution of the soliton parameters togethewhere
with the localized corrections describe well the PDE solution .
at low velocity as shown in Fig. 6, which displays the solu- N a1
tion (PDE in full line, adiabatic plus correction in dashed Fa=2| —AT+26n"A+ 2
line) as a function ok for timest=10,20,30 corresponding 4 .
to the parameters of Figs. 1 and 2. 2 Ty 28 2.0
When the initial velocity is increased, the soliton emits +A.| 264 37 A+2ea 3577 )
radiation. Let us estimate the spectral density of waves emit-
ted by the soliton. The energy of emission is +A2| A2+ En2+2§A) +A3 EA
B 2 *3
2 ©
Erad:;leln[la(A)rz]d)\r (27 andA_.=a/2+A.
__To computeb(\) and P(\) it is useful to introduce
with |a|?+|b|?=1. Then fore<1, In(al~?~|b|* and b=e%’th, which satisfies the ordinary differential equation
2 (= b i i(S5— 2
Erad:_f b\ [2dN,  t51. 28) b _ieAexili(5-21¢+4N1)]
T e at 27(A%+ 7%

The wave number of the emitted waveskis 2\ and their 514 is such that Ré( ob/ot) = Re(ﬁaaat).

frequencyw(\) =4\2. The spectral density of waves is just Using the time dependence for the parameterg ob-

the derivative of the integrand &4 with respect to\. The  tzined from the adiabatic equatio®—(8) one obtains
Jost coefficienb(\,t) satisfies the equatigril]

I iyt it
B iy EERIOZAND e (29 %ZAIZ%WZ{ ?i +/2 )" E_i 2|
—=—4i —_——— £.m), coshm coshmA _
where where ¢ = 4(£2+ 72) + 4£(2\ £ a) + 4\2.
- Az Because of the oscillatory nature of this function, it needs
A()\,g,y,)zf exr{ —i —)[(A—intanrz)zR to be integrated after multiplication by an integrating factor
- 7 e . Taking the limit a—0, we obtain for the spectral
— y?secRzRF]dz, (30) power density
andA=\+¢. PO\ =2R EOE)_ 8me? [ Fidop(ey)
Substituting the expression fét from Eq. (24) into Eq. B ot | (A%+ %)% cosi(mA, 127)
(30), we get after some tedious calculations )
_ N FZdp(¢-) -
4mme 2t cosf(wA_127) |’ (33

AN m)= WF+()\-§JL§)
_ where ép, is the Dirac delta function.
4mne'dt _ ) (3 For positive & and a, ¢, is never O buté_ is 0 for
cosi@A_[27n) ~ &7.0), )\=)\% where



6066 F. KH. ABDULLAEV AND J. G. CAPUTO 55

1 ! 0.60
: &= 0.50
0.40
0.60
wp 05t c 1 S 0.50
0.40
d—¥—e 0.60
= 050
a
0 0.40 | ‘
0 05 1 0 10 20 30
n t

FIG. 8. Time evolution ofy for the PDE(solid line) and the
adiabatic equationglashed lingfor the positionsa, b, andc indi-
cated in Fig. 7 corresponding to initial velocitiég=0,0.25, and

0.3, respectively. The values of the parametersaaaré, e=0.1 and
— 2
A=—&XVaé— 7" (34 the initial conditions arep,=0.5, {o=10.

FIG. 7. Plane §,¢) showing the resonance condition
aé—7?=0 fora=1.

This shows that emission of linear waves is only possiblgs given as a solid line while the dashed line presents the
when aé>»n- and that th|§ emission is concentrated .atevolution as given by the adiabatic equatiqBs—(8). We
A=\j. The group velocity of the linear waves is naye good agreement i@ while in (b) the modulation of
v=—4\] and the maximum of emission occurs when thethe amplitude for the PDE solution tends to increase with

argument of the cosh is very small, i.e/2—a&é— 7?><1  time and a big discrepancy is seen.(&) the modulation for

or a?/4~a¢— n?. the PDE decreases with time and the soliton will eventually
The total emitted poweP= [ TZP(\)d\ is get trapped in a potential well; no good agreement is ob-
served with the solution of the adiabatic equations. These
873e2 1 F2( Ay studies are consistent with the red@5), which predicts that
P= > — no radiation exists foaé— 7°<0 [case(a)] and that there is
(a8)” Ja&—n?| cost[ m(a—2+aé— n?)/47] resonant emission of linear waves f¢— 7?=0 [case(b)]
2 and that this emission exists as soonaas- »°>0 [case
_ F=(r2) @5 ©1
cos[ m(a+2\aé— n?)l4n)| In the second set of experiments we have fixed the initial

velocity £€=0.25 and varied the initial amplitude from
This formula shows that there is a resonance wheny=0.45(d), »=0.5(b) to »=0.55(e); the results are pre-
aé—7?=0. To investigate this effect we report numerical sented from top to bottom in Fig. 9. The PDE solution dis-
experiments done for several initial values of the parameteragrees with the ordinary differential equation solutions in
n and ¢ in the plane shown in Fig. 7. The resonance condi-caseqd) and(b) while there is a reasonable agreement in the
tion aé¢— 7?=0 is indicated by a solid line. In the first set of case(e) for which a¢— ?<0. This shows that the adiabatic
experiments we have set initially=0.5 and taken three equations(5)—(8) provide an adequate description of the
values of the initial velocityé: é=0 (a), which has been PDE dynamics only whemé— 7%<0. If this condition is
presented in Figs. 1 and 2=0.25(b), andé=0.3(c). The  not fullfilled the adiabatic description does not agree with the
temporal evolution of; as a function of time is given in Fig. PDE solution and the second-order terms due to the radiation
8 where casda) is presented in the top plate, cad® is  need to be taken into account.
presented in the middle plate, and cdsg in the bottom For large velocitiest?>a?, »?, the total emitted power
plate. The value; estimated from the numerical experiments becomes

1 1

1
Jai— 72| cosf[ m(a—2\aé— 72)45] cosR[w(a+2\aé— 12)4n]|

P=8m3e2é?

(36)

Notice that whera&> 72, the maximum of emission occurs far<|4&|, which is the soliton velocity. This is the so-called
phase-resonant case found by Scharf and BigbhpWe obtain here their estimate directly from inverse scattering theory.

The calculations can also be done for a linear periodic potesgiahxu(x,t) and the total emitted power has a very similar
expression to the one above
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L we F2(\y) ) FZ ()
I|near_8(a§)2 \/W COSH[’FT(a_Z‘/ag_ 772)/47]] COSH[W(a"'Z\/ag_ 7]2)/477] ,

whereF_=279A(A—a)+ 7°[—1+3(A_/7)?].

The conclusions that were drawn from the case of modulated dispersion hold in this case too. Therefore the numerical
results of Scharf and Bishd6] can be interpreted in the light of the above resonance condition. When the variations of the
potential are large compared to the soliton width, Be<,» a large velocity¢ is necessary for the soliton to emit radiation. For
a small velocity no radiation is emitted so that the medium can be considered as transparent for the soliton. This is in
agreement with the results of Kivshat al. [16] which were obtained by taking fo¥ a sum of§ functions and assuming
independent scattering. In the case 7, the so-called “dressed” soliton will emit radiation for very small velocities. Only
when ¢=0 will there be no emitted radiation.

We will now proceed to show that for large velociti€the soliton will experience exponential radiative damping as was
evidenced in some early numerical experiments by one of the authdfsin the case of a linear potential the number of
quantaN= [ *Z|u|?dx is conserved so that we can use the following formula from inverse scattering {Hgdry

(37

+ o
N=477+f |b(\)|2dN,

whereb is the Jost reflection coefficient. Differentiating this expression with respect to time yields

o—dN—4d”+J+wP N)dA
ot Yar (N)dA.

—

Using expressiol(37) for the total emitted power and the expressiorFaf we obtain the exponential damping of the soliton
amplitude

GZ(\y) - G2(\p)
cos[ m(a—2\aé— 7?)l4n] cosH[m(a+2\aé—7)l4n]]

dn me 1

dt~ 732a8)? Jag 2

whereG_=2A(A—a)+ 73 [—1+3(A_/7)?]. ear optics of waveguides. Let us consider the problem of the
The power emitted in the form of linear waves is alsopropagation of a soliton in an array of tunnel-coupled

important for the study of an array of planar waveguideswaveguides with a variable couplif§,19]. The correspond-

where the parametef is the tangent of the angle of propa- ing system of equations has the form

gation in the g,x) plane. We will show in the next section

that such a system can be reduced to a perturbed nonlinear —iUn,=Vnns1Uni1+ Voo ipUno1+|Up?un. (39)

Schralinger equation where the perturbation consists of both ) . _

a space-dependent dispersion and a linear potential. Therl{l the continuum limit it is possible to use the Taylor expan-

fore for that problem the influence of radiation is importantSion foru, andVy !

and can lead to a resonant distorsion of the spatial soliton. A h2
detailed knowledge of this damping mechanism could enable Ups 1= U(X) = U+ = Uyt - - -,
one to shift the beam from one guide to another. Figure 10 B 2

shows the soliton profile for three different times10 (top),

20 (middle), and 30(bottom for the resonant case. The dif-
ference between the solution given by the adiabatic equa-
tions as a dashed line and the PDE solution grows as time
increases. Far=30 the pulse given by the PDE is trapped in Substituting these expressions into Eg8), we obtain for
a potential well, while the adiabatic equations predict that itu(x,z) the equation

keeps moving left. Thus the pulse has been shifted from the

h2

h h
Vn,n+1:V(Xi§) =V(X)i§VX+ EVXX—F -

positionx=56 to x=45. —iu,=2Vu+h?(Vu+ 3V, u+ Vi) +|ul?u+0O(h%).
(39
V. APPLICATION TO THE PROPAGATION OF SPATIAL One can define a reduced spatial variaptex/h 2, use the
SOLITONS IN ARRAYS OF OPTICAL WAVEGUIDES phase shifu =—e”%?u , and rescale the variabieby ; to
WITH VARIABLE COUPLING obtain the reduced equation
The problem of the propagation of an envelope soliton in v, vy, 2|v|2v=(1—V)vyy— Vv, — %Vyyv

a medium with a space-dependent dispersion studied in the
previous sections has an important application in the nonlin- —4(V—1)v. (40)
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FIG. 9. Time evolution of; for the PDE(solid line) and the FIG. 10. Profile of[u| as a function ofx for different times

adiabatic equation@lashed lingfor the positiond, b, ande indi-  t=10 (top), t=20 (middle), t=30 (bottom) for the resonant case,
cated in Fig. 7 corresponding to initial amplitudes=0.45, 0.5, the PDE solution is given by the solid line and the solution given by

and 0.55, respectively. The values of the parametersaar@, the adiabatic EqY5)—(8) given by the dashed line. The values of
€=0.1 and the initial conditions ar&,=0.25, {,=101. the parameters ara=2.5, e=0.1 and the initial conditions are

170=0.5, {,=18m, and £,=0.1. V(x) has been drawn as a long-
Notice that this system can be derived from the Hamiltoniarflashed line.
density

v
H=V|v 2~ [o[*~[Vyy +4(V-D]v[2 (4D £=0 and a{=25+2nm,

In the case of a periodic modulation of the coupling betweerexcept if #%/3+ a?/48=1. It can be seen that the fixed
the waveguides within the array/(x)=1+esin@X), Eq.  pointsal{= w/2 (—w/2) are stable ify*/3+ a?/48—1<0
(40) becomes (>0). Figure 11 shows the phase portraits/(¢) obtained

) ) ) _ for Eqgs. (44) and (45) in the casen=1.4 (top) and n=2

v, +vyy+2|v[v = — (4= a’ld)sin(ay)v — eacogay)vy  (bottom) where the orbits are given just as in the case of the

— esin(ay)u (42) pendulum by the level curves of the Hamiltonian
yy!
4 H 2 2
wherea=ahy2. H(§,§)=16n§2+ﬂ 77_+_+§2_1}_
The adiabatic equations for the soliton parameters can be sinh(maldn)| 3 48

derived by combining Eqg5)—(8) with the ones for a linear (46)

potential. The different contributions to the evolution equa-

tion of the amplitude cancel out so that One clearly sees that the fixed pointed==/2,6=0),

which was a center forp=1.4, becomes a hyperbolic

dn
—= 0.8
i 0. (43

The amplitude of the soliton is not changed. This reflects the
fact that the number of quant&Z|u|?dx is conserved by
Eq. (39). However, in the case of a chirped bef8j oscil-
lations of the amplitude and width will appear.

For the velocity(which corresponds to the angle of propa- 08
gation we obtain 0.8
d ema’cod a 2 a?
df__emacosal) (w0 @ o q) (g
dt 2nsinNwaldn)\ 3 48 0.0
For the soliton centef we obtain the equation
-0.8
d¢ emasin(al) 0.0 2.0 4.0
— =41t (45
dt 4psinh(mal4n) FIG. 11. Phase portraitsx{, &) for »=1.4(top) and =2 (bot-

' . . . tom) for the adiabatic equationg44)—(45) for an array of
The fixed points associated to these equations are fagaveguides. The values of the other parametersear€.1 and
(e<1) a=1.
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fixed point for p=2. Notice that when dentangle is sifi=2(¢B) whereg is the propagauon index.
n=n* =\3(1— a?/48) (a{,&=0) is a fixed point for any Using the condition for resonant emissiag= 7> we find
value of { so that the solitons of amplitude parametgf the value of the incident angle leading to a resonant distor-
propagate without being affected by the modulation of thetion of the beam in the array of waveguides with a periodi-
waveguide coupling. cally varying coupling

The property of the fixed points described above suggests
using such a device as a filter to separate pulses of different
amplitudes because the solitons for whigkt »* get trapped i=asin(27? pa).
by the fixed points corresponding tel= /2 whereas the
pulses for whichnp> #* are attracted to the fixed points cor-
responding toe{= — /2. It would be then possible to use  In the case of a random modulation of the coupling be-
the device as a switch by sending along the channeiween the waveguides one can estimate the distribution func-
al=m/2 a small pulse so that a pulse that was originallytion for the effective random potential relief acting on the
trapped would be shifted to the neighboring channel corresoliton in motion. For this we use the technique introduced in
sponding to the other type of fixed point. [20].

From the results of Sec. IV it is possible to estimate the First notice that Eq(39) can be derived from the Hamil-
condition for resonant decay of the spatial soliton. The inci-tonian

+o , 1 ., h1 ) . .
H= 2V|U| +§|U| +7 EVX(|U| )X—(VU )xux_(vu)xux

]dx. (47)
Writing V(x) =Vy+V(X), one gets

e 2 1 4 h2 2 h2 1 2 * *
H= 3 2V|U| +§|u| _?V0|UX| + 5 §V1X(|u| )x_(Vlu )xux_(vlu)xux

2

] dx (48)

so that for an inhomogeneous array the addition to the energy due to the random modulation is

+oo h? h2 [+e
AH= f 2Vl_ Zlex) |U|2dX— ?I [(V1U*)xux+ (V1U)XU:]dX, (49)
|
which reduces by integration by parts to ) h? )
, f(x)=2u] —7[|le —Re(U*uy,) ], (53
+o0 h
= 2_ 2_ *
AH f—oc V1(2|u| 2 [luxl* = Re(uu )])dx which satisfies the following equation:
(50)
JAH(X)
Let us now find the distribution function for the effective ax F()=TO)V(X). (54)

random potential relief acting on the soliton in motion. For

this we use the technique introduced[i20] for the sine- To obtain the equation foP(AH,x) we will differentiate
Gordon equation. In the case of an inhomogeneous array tHeqg. (52) by x and get

addition to the energy due to the random modulation is

P [oAH(X) 4
ox ox  9AH

) 2 —— 0(AH - AH(X))>
AH:f_mV1(2|U|2_?[|Ux|2_Re(U*UXX)] dx. (5D
= () V() SAH—AH(X))).  (55)

We must find the distribution functioR(AH) where &AH

Here we have the correlatorV(x)S(AH—AH(x)))
=(V(x)5(AH,x)). This correlator can be decoupled by the
Furutzu-Novikov formuld 14]

P(AH)=(S8(AH—AH(x))). (52
For the calculation oP we introduceAH(x), defined as

AH(x)=fx F(X)V4(x)dx, (V(X)8(AH,x)) f dx' (V(X)V(X’ )><—5 AH x)>
h (56)

where AssumingV is § correlated we obtain
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(V(x)é(AH,x))=02<ﬁiV5(AH,X)>. (57)

Here we should note that

J _ J dAH
W5(AH,X) = m5(AH,X)W (58)
J

~1055m

(S(AH %)
9

Y

(P(AH,x)). (59

Using Eqgs.(57) and (59) we obtain finally the equation for
the distribution functiorP(AH,x):

JP(AH,X) &2

—~ =(r§f2(x)(9A—H2 P(AH,X). (60)
Its solution has the form
P(AH,X) = —=—==—=¢exp — —Azi) ,
270oG(X) 20,G(x)
G(x)=waf2(x’)dx’. (61)

Therefore the additional energyH added to the energy of

F. KH. ABDULLAEV AND J. G. CAPUTO

8\/5777/2

Up=VG(7,¢,2)~ 7

(63

So in a random medium with a small correlation length, the
soliton is trapped by an effective potential that has a typical
scale of the order of the soliton width.

VI. CONCLUSION

We have performed an analytical and numerical investi-
gation of the dynamics of an envelope soliton in a medium
with spatially variable dispersion. For a periodic modulation
the PDE solution agrees well with the evolution given by the
adiabatic equations for the soliton parameters for small ve-
locities. We also present preliminary results in the random
case.

When the velocity is increased the soliton emits linear
waves and we calculate the density of emission. We find that
there is a resonance wheg— »>=0 and have investigated
the parameter space around that point. Here it is important to
recognize the practical usefulness of the inverse scattering
theory because this condition cannot be easily obtained from
physical considerations. Note also that our study, which is
valid both for a linear potential and in the space-dependant
dispersion case, shows that linear waves are emitted as soon
asaé— 7 is positive.

We have applied this study to the problem of propagation

the soliton because of the presence of the perturbation tern®$ Spatial solitons in arrays of waveguides with a periodic
induced by the array has a Gaussian distribution of mean @ariation of the coupling and find that in the continuum limit

and standard deviatioanG( 7, £,), where

[’

12
G(77,§a°°): f,wfz(xr)dxr :?8773|:1_8§2+ 1664

16 96
g PR N

(62

where the parametdr has been eliminated by the redefini-

tion of x.

the problem reduces to an NLS equation with a Hamiltonian
perturbation. We show that the amplitude of the pulse is
conserved and that largesmal) amplitude pulses are at-
tracted by the maxim#&minima of the coupling potential,
enabling the device to act as a filter or a coupler. Finally we
calculate the Gaussian distribution function for the additional
energy of the solitons due to the array.
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