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Propagation of an envelope soliton in a medium with spatially varying dispersion
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We study analytically and numerically the motion of a nonlinear Schrodinger soliton in a medium with
spatially modulated dispersion. The cases of periodic and random modulations of the dispersive term are
considered. In the former, numerical simulations for small velocities show a good agreement with the adiabatic
equations. When the velocity is increased the soliton emits linear waves and we calculate their spectral density
and show the existence of a resonant condition connecting the amplitude and velocity of the soliton to the
wavelength of the modulation. The important application of steering a spatial soliton in an array of tunnel
coupled planar waveguides with variable coupling is considered.@S1063-651X~97!08104-X#

PACS number~s!: 03.40.Kf, 05.40.1j, 66.90.1r, 42.25.2p.
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I. INTRODUCTION

Recently some authors have investigated the dynamic
an envelope soliton in a medium with a time-dependent
persion@1–3#. This connects with the important applicatio
of soliton propagation in optical fibers and in optical loo
devices. The dynamics of a single soliton in a medium w
a periodic and random variation of dispersion~or nonlinear-
ity! has been studied@1,2# and the resonant emission of so
ton and radiative damping has been estimated. This is im
tant for understanding the motion of a soliton in a fib
optical loop with variable dispersion. For chirped pulses,
case of a dispersion periodically modulated in time was c
sidered in@3# using a variational approach. In some cases
width grows to infinity, indicating a destruction of the puls
Recently the influence of a strong temporal dispers
d-like perturbation on a soliton propagating in an optic
fiber has been studied in@4#. In the case of the propagation o
spatial optical solitons it is important to study the influen
of a spatial variation of the dispersion. Such types of pr
lems appear, for example, when studying the propagatio
a soliton beam in an array of planar optical waveguides w
variable coupling@5,7#. This system has attracted attentio
recently because of its importance for all optical process
It is important to note that in the linear limit, it can exhib
localization as in the Anderson or Lifschitz models if th
dependence that is random is the refraction index or the s
ration between waveguides@5#. An array of nonlinear
waveguides seems to be a unique system for the observ
of the competition between nonlinearity and disorder and
experimental observation of the influence of the nonlinea
on Anderson localization. Usually the static disorder induc
by the linear random potential is studied. An equally imp
tant interest for soliton perturbation theory is to investig
the influence of random dispersive perturbations. Taking i
account these facts, in this work we perform an analyti
and numerical investigation of the influence of a spa
modulation of the dispersion on the process of envelope s
ton propagation. The cases of periodic and random mod
551063-651X/97/55~5!/6061~11!/$10.00
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tions of dispersion are considered. In Sec. II the adiab
dynamics of solitons in the medium with a periodic variati
of dispersion is considered, phase portraits, fixed po
analysis and comparison with the full numerics for the par
differential equation~PDE! are performed. Section III de
scribes the adiabatic dynamics of a soliton in a medium w
a randomly fluctuating dispersion for short times, and p
sents the behavior of the mean values of the soliton par
eters. In Sec. IV the radiative processes of solitons conne
with propagation for large velocity are studied for the pe
odic modulation case, the spectral density of emission
found together with a resonant condition. In Sec. V we co
sider the physical application of this model to the propa
tion of spatial optical solitons in arrays of planar nonline
optical waveguides with variable coupling.

II. ADIABATIC DYNAMICS OF NLS SOLITON IN THE
MEDIUM WITH THE PERIODICALLY MODULATED

DISPERSION

We will study in this work the nonlinear Schro¨dinger
~NLS! soliton dynamics in media with spatially changin
dispersion. The problem is described by a modified N
equation

iut1uxx12uuu2u5V~x!uxx , ~1!

in which the dispersion term is modulated in space. In r
physical situations we must add other terms such asV(x)u
andVxux ~see Sec. V!. The linear potential caseV(x)u has
been considered by Scharf and Bishop@6#. Here we will
study the simple model given by Eq.~1!.

Let us consider the propagation in such a medium of
single soliton solution

us~x,t !52ihsech~z!exp~2 ic!, ~2!

c52jx1f, f54~j22h2!t, ~3!

z52h~x2z!, z524jt. ~4!
6061 © 1997 The American Physical Society
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6062 55F. KH. ABDULLAEV AND J. G. CAPUTO
AssumingV(x)5esin(ax), whereLa52p/a is the period of
dispersion modulation, and applying the equations of
adiabatic approximation@8,9#, we obtain the following sys-
tem of equations for the amplitudeh, velocity j, the center
of the solitonz, and phasef, correspondingly:

dh

dt
5

pea2jcos~az!

sinh~pa/4h!
, ~5!

dj

dt
5

pa2eh

2sinh~pa/4h! F13 S 12
a2

8h2D2
j2

h2Gcos~az!,

~6!

dz

dt
524jH 12

paesin~az!

2hsinh~pa/4h!

3F12
pa

8h
cothS pa

4h D G J , ~7!

df

dt
5 4~j22h2!1

paesin~az!

2hsinh~pa/4h! F a2

12h2

1S 12
j2

h2 2
pa

6h
2

pa3

96h3D cothS pa

4h D G
1

pa2ezcos~az!

12hsinh~pa/4h! F3j2

h2 1
a2

8h2 21G .
~8!

These equations are complicated to analyze so we
consider the case of small velocitiesj0;e. In that approxi-
mation one can then neglect the variation of amplitude w
time and leth5h0 . Then from Eqs.~5!–~8! one can sepa
rate the equations for the velocityj and the coordinate of the
soliton centerz:

dj

dt
5

pa2eh

6sinh~pa/4h! S 12
a2

8h2D cos~az!, ~9!

dz

dt
524j. ~10!

Changing variables byz→z1p/2a,t→tAa we have from
Eqs.~9! and ~10!

d2z

dt2
1v0

2sin~az!50, ~11!

which is the equation of a pendulum with a frequency giv
by

v0
25

2paeh

3sinh~pa/4h! S 12
a2

8h2D . ~12!

This shows that the soliton is oscillating slowly in the effe
tive potential well with the frequencyv0;exp(2pa/4h)
@10,6#. The effective potential is exponentially small for th
broad solitons for whichpa/4h@1.

Let us find the fixed points from the system~5!–~8!. We
will not consider Eq.~8! which is uncoupled from the sys
tem. It can be seen that the condition fordz/dt50 is j50
e

st

h

n

because the term in the brackets is always strictly posi
whene,1. Thus the fixed points of the system~5!–~7! are
such that

j50 and a258h2 or z5
p

2a
1k

p

a
, ~13!

wherek is an integer. For these two sets of fixed points t
Jacobian matrix is singular so that nothing can be said ab
the stability by considering the linearized system. Numeri
results indicate, however, that both sets of fixed points
unstable.

It is important to notice that the perturbation on the righ
hand side~rhs! of Eq. ~1! does not allow the conservatio
of the number of particles N5*2`

` uuu2dx, mo-
mentum P5( i /2)*2`

` (uxu*2ux* u)dx, or energy
E5*2`

` (uuu42uuxu2)dx. Following the method suggested b
Karpman@11#, one can find the evolution of these quantiti
under the action of the perturbation.

dN

dt
52eE

2`

`

VxIm~ux* u!dx, ~14!

dP

dt
5eE

2`

`

Vxuuxu2dx, ~15!

dE

dt
54eE

2`

`

Vuuu2Im~uxxu* !dx, ~16!

We have compared the evolution of the soliton parame
in the adiabatic approximation given by Eqs.~5!–~8! with
the full numerical solution of the PDE~1!, which was solved
using a method of lines in which the space derivative
discretized using finite differences with Dirichlet bounda
conditions, and the solution advanced in time by an ordin
differential equation solver: we have used the variable s
Runge-Kutta method of order 5 from@12#. Results were
checked by monitoring the evolution of the number of p
ticles, momentum, and energy as defined above and com
ing their numerically computed derivatives with the righ
hand sides in the formulas~14!–~16!, in all cases the
agreement was better than 0.005 in relative difference.
also checked the results by doubling the number of g
points. The soliton parametersh andz were then estimated
by least-squares fitting the modulus of the numerically co
puted solution by the expression given in Eq.~2!. j was then
estimated from Eq.~4!.

Figure 1 shows the time evolution ofh andz for the PDE
as a solid line and for the adiabatic equations as a dashed
for a51 and a soliton with 2h51 with initial position
z0510p, for which sin(az0)50 and zero initial velocity.
This initial condition is such that the perturbation is ze
initially. This is important because if the perturbation is n
zero fort50, the initial condition should be modified to tak
into account the new balance between dispersion and no
earity. Figure 1 shows an excellent agreement forz, showing
that the soliton is oscillating in the potential well with
period of about 41.6, which is slighly larger than the peri
derived from Eq.~12! because of the variation ofh. There is
a 2% relative mismatch forh between the PDE and
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55 6063PROPAGATION OF AN ENVELOPE SOLITON INA . . .
the adiabatic formulas. Indeed we have found that theh
estimated from the PDE is consistently smaller than the
predicted by the adiabatic equations when the modula
period is large compared to the soliton width.

Figure 2 shows the phase portraits (h,z) and (z,j) for the
PDE and adiabatic equations corresponding to the evolu
described in Fig. 1. The analogy with the pendulum pha
space is clear from the (z,j) phase-portrait where the centr
fixed point has been represented.

III. MEDIA WITH RANDOM SPATIAL DISPERSION

We will consider in this section the propagation of spat
solitons in a medium with random spatial dispersion in
direction of propagation. For that we have modeledV with a
random function uniformly distributed between21 and11
@13# multiplied by a given amplitude factor. Figure 3 show
a soliton moving in one realization of the random poten
for different times. The amplitude of the potential is 0.1 a

FIG. 1. Time evolution ofh ~top! andz ~bottom! for the PDE
~solid line! and the adiabatic equations~dashed line!. The values of
the parameters area51, e50.1 and the initial conditions are
h050.5, z0510p, andj050.

FIG. 2. Phase portraits (h,z) ~top! and (z,j) ~bottom! for the
PDE and adiabatic evolutions corresponding to Fig. 1.
e
n

n
-

l
e

l

the parameters of the soliton initially areh050.5,
z0510p, and j050.05. It can be seen that the pulse fir
moves towardx50 and then back toward the large values
x, this is due to the soliton encountering a potential barrie
cannot overcome. At the end of the paper we will calcul
the average pinning potential for a soliton in an array
randomly coupled waveguides.

For a large number of realizations one can examine
average of the soliton parameters. For this we chose the
rametersh050.5,e50.1 and small velocities for the solito
j050.05 andj050.15. A common feature of these two se
of experiments is that the average value ofh varies by less
than 1% over the time interval considered (t,30). The time
variations of^z& and^j& are presented in Fig. 4 from top t
bottom. 400 realizations were necessary for the aver
value of the velocitŷ j& to reach a stationary value within
few percent. The picture shows that^z& follows an almost
linear behavior given to a good approximation b
^z&524^j&t1z0 while ^j& decreases by about 10% an
exhibits oscillations of period about 10. Let us show th
some of these results can be explained with the help of
adiabatic equations for the soliton parameters

dh

dt
58ejh2E

2`

1`

cosh22ztanhzVS z

2h
1z Ddz, ~17!

FIG. 3. Profile ofuuu (x,t) for a soliton propagating in a me
dium with random dispersion. The parameters aree50.1,
h050.5, j050.05,z0510p.

FIG. 4. Time evolution of̂ z& ~top! and ^j& ~bottom! for the
PDE solution. The average was done on 400 realizations. The
ues of the parameters aree50.1 and the initial conditions are
h050.5, z0510p, andj050.05.
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dj

dt
54eh3E

2`

1`

cosh22z~2112tanh2z!tanhzVS z

2h
1z Ddz

24ej2hE
2`

1`

cosh22ztanhzVS z

2h
1z Ddz, ~18!

dz

dt
524j14ejE

2`

1`

zcosh22ztanhzVS z

2h
1z Ddz.

~19!
The numerical results show thath can be assumed to b
constant so that using the change of variablesz→z/2h1z
the system reduces to the two equations

dj

dt
54eh3E

2`

1`

V~x! f s@2h~x2z!#dx

24ej2hE
2`

1`

V~x!gs@2h~x2z!#dx, ~20!

dz

dt
524j1O~e!, ~21!

where f s(z)5cosh22z(2112tanh2z)tanhz and gs(z)
5cosh22ztanhz The second equation gives by averaging
evolution of ^z& ^z&(t)524^j&t1z0, which is the result
observed in the numerical simulations. Fort,30 this is ver-
fied with a 3% relative error.

The evolution ofj is complicated: the first term on the rh
of Eq. ~20! can be averaged out assuming thath is constant
but the second term cannot be computed because of the
ence ofj. Therefore we do not have at this time an analy
estimate of the evolution of̂j&. The range of this evolution
is much smaller if the initial velocity j0 is larger
(j050.15) as shown in Fig. 5 where the decrease of^j& is

FIG. 5. Same as Fig. 4 except that the initial velocity
j050.15.
e

es-

about 1%. Note that the behavior ofz is again given by
^z&(t)524^j&t1z0.

To conclude, it seems that the decay of the velocity of
soliton for small velocity is a resonant effect. To study
simpler situation we now consider the emission of line
waves by the soliton in the case of a periodic modulation
the dispersion. We will find a resonance condition conne
ing the soliton parameters with the wave length of the mo
lation. This resonance condition explains many numeri
results obtained previously by other authors.

IV. THE EMISSION OF WAVES BY SOLITONS IN A
MEDIUM WITH A PERIODICALLY MODULATED

DISPERSION

Together with the adiabatic dynamics, which is the c
rection to the discrete spectrum of the associated linear s
tral problem due to the perturbation, the correction to
continuum part of spectrum also gives a contribution to
solution. This continuum correction gives two kinds of co
tributions: the first one corresponds to the correction loc
ized on the soliton and is responsible for the reconstruc
of the soliton profile while the second represents an oscil
ing field that has a part corresponding to the emission
linear waves by the soliton. Below we find both parts usi
the perturbation theory based on the inverse scattering tr
form @8,9,15#.

Let us calculate initially the correction localized on th
soliton duloc . According to @8# the asymptotic behavior o
duloc is defined by the expression

duloc52ihwlocexp~2 ic!,

where

FIG. 6. Profile of uuu as a function ofx for different times
t510 ~top!, t520 ~middle!, t530 ~bottom! corresponding to Fig. 1.
V(x) has been drawn as dashed lines and shifted vertically
clarity.
wloc
1 5

ez2exp~2z!

32ih3 E
2`

` FRexpS 2z82 i
j

h
z82 id D1R* expS z1 i

j

h
z81 id D Gsech~z8!dz8 ~22!

for z→1` and
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wloc
2 ~z!5

ez2exp~z!

32ih3 E
2`

` FRexpS z82 i
j

h
z82 id D1R* expS 2z81 i

j

h
z81 id D Gsech~z8!dz8 ~23!

for z→2` and whereR52 iV(x)uxx52 isin(ax)uxx and d52f22jz1p/2. Substituting into Eqs.~22! and ~23! the
expression for the perturbation

V~x!uxx5esin~ax!8ih3sechzF12
j2

h2 22sech2~z!12i
j

h
tanh~z!Gexp~2 ic!, ~24!

we find for the asymptotic behavior of the localized correction foruzu@1

wloc
1 ~z!'

ez2pa2cos~az!exp~2z!

16h2sinh~pa/4h! H 212
j2

h2 1 i F2
2j

h
1
2

3S a2

16h2 11D G J , ~25!

wloc
2 ~z!'

ez2pa2cos~az!exp~z!

16h2sinh~pa/4h! H 211
j2

h2 1 i F2
2j

h
1
2

3S a2

16h2 11D G J . ~26!
h
io
lu
d

its
m

st

n

ds
tor
l

The adiabatic evolution of the soliton parameters toget
with the localized corrections describe well the PDE solut
at low velocity as shown in Fig. 6, which displays the so
tion ~PDE in full line, adiabatic plus correction in dashe
line! as a function ofx for times t510,20,30 corresponding
to the parameters of Figs. 1 and 2.

When the initial velocity is increased, the soliton em
radiation. Let us estimate the spectral density of waves e
ted by the soliton. The energy of emission is

Erad5
2

pE2`

`

ln@ ua~l!u22#dl, ~27!

with uau21ubu251. Then fore!1, ln(uau22)'ubu2 and

Erad5
2

pE2`

`

ub~l!u2dl, t@1. ~28!

The wave number of the emitted waves isk52l and their
frequencyv(l)54l2. The spectral density of waves is ju
the derivative of the integrand ofErad with respect tol. The
Jost coefficientb(l,t) satisfies the equation@11#

]b

]t
524il2b1

i eexp~ id22ilz!

2h@D21h2#
A~l,j,h!, ~29!

where

A~l,j,h!5E
2`

`

expS 2 i
Dz

h D @~D2 ihtanhz!2R

2h2sech2zR* #dz, ~30!

andD5l1j.
Substituting the expression forR from Eq. ~24! into Eq.

~30!, we get after some tedious calculations

A~l,j,h!5
4phe2 iaz

cosh~pD1 /2h!
F1~l,j,h,z!

1
4pheiaz

cosh~pD2 /2h!
F2~l,j,h,z!, ~31!
er
n
-

it-

where

F656S 2D2j212jh2D1
h4

2 D
1D6S 2jD22

4

3
h2D12j2D2

5

3
jh2D

6D6
2 S D21

5

2
h212jD D1D6

3 2

3
D

andD65a/26D.
To computeb(l) and P(l) it is useful to introduce

b̄5e4il
2tb, which satisfies the ordinary differential equatio

]b̄

]t
5
i eAexp@ i ~d22lz14l2t !#

2h~D21h2!

and is such that Re(b* ]b/]t)5Re(b̄* ]b̄/]t).
Using the time dependence for the parametersz, f ob-

tained from the adiabatic equations~5!–~8! one obtains

]b̄

]t
5

i e2p

D21h2F F1e
if1t

cosh~pD1 /2h!
1

F2e
if2t

cosh~pD2 /2h!G ,
~32!

wheref654(j21h2)14j(2l6a)14l2.
Because of the oscillatory nature of this function, it nee

to be integrated after multiplication by an integrating fac
e2at. Taking the limit a→0, we obtain for the spectra
power density

P~l!52ReS b̄ ]b̄*

]t D 5
8p3e2

~D21h2!2
F F1

2 dD~f1!

cosh2~pD1 /2h!

1
F2
2 dD~f2!

cosh2~pD2/2h!
G , ~33!

wheredD is the Dirac delta function.
For positive j and a, f1 is never 0 butf2 is 0 for

l5l1
2
where
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l1
2
52j6Aaj2h2. ~34!

This shows that emission of linear waves is only possi
when aj.h2 and that this emission is concentrated
l5l1

2
. The group velocity of the linear waves

v524l1
2
and the maximum of emission occurs when t

argument of the cosh is very small, i.e.,a/22Aaj2h2!1
or a2/4'aj2h2.

The total emitted powerP5*2`
1`P(l)dl is

P5
8p3e2

~aj!2
1

Aaj2h2 F F2
2 ~l1!

cosh2@p~a22Aaj2h2!/4h#

2
F2
2 ~l2!

cosh2@p~a12Aaj2h2#/4h!
G . ~35!

This formula shows that there is a resonance wh
aj2h250. To investigate this effect we report numeric
experiments done for several initial values of the parame
h andj in the plane shown in Fig. 7. The resonance con
tion aj2h250 is indicated by a solid line. In the first set o
experiments we have set initiallyh50.5 and taken three
values of the initial velocityj: j50 ~a!, which has been
presented in Figs. 1 and 2,j50.25 ~b!, andj50.3 ~c!. The
temporal evolution ofh as a function of time is given in Fig
8 where case~a! is presented in the top plate, case~b! is
presented in the middle plate, and case~c! in the bottom
plate. The valueh estimated from the numerical experimen

FIG. 7. Plane (h,j) showing the resonance conditio
aj2h250 for a51.
e
t

n
l
rs
i-

is given as a solid line while the dashed line presents
evolution as given by the adiabatic equations~5!–~8!. We
have good agreement in~a! while in ~b! the modulation of
the amplitude for the PDE solution tends to increase w
time and a big discrepancy is seen. In~c! the modulation for
the PDE decreases with time and the soliton will eventua
get trapped in a potential well; no good agreement is
served with the solution of the adiabatic equations. Th
studies are consistent with the result~35!, which predicts that
no radiation exists foraj2h2,0 @case~a!# and that there is
resonant emission of linear waves foraj2h250 @case~b!#
and that this emission exists as soon asaj2h2.0 @case
~c!#.

In the second set of experiments we have fixed the ini
velocity j50.25 and varied the initial amplitudeh from
h50.45 ~d!, h50.5 ~b! to h50.55 ~e!; the results are pre
sented from top to bottom in Fig. 9. The PDE solution d
agrees with the ordinary differential equation solutions
cases~d! and~b! while there is a reasonable agreement in
case~e! for which aj2h2,0. This shows that the adiabati
equations~5!–~8! provide an adequate description of th
PDE dynamics only whenaj2h2,0. If this condition is
not fullfilled the adiabatic description does not agree with
PDE solution and the second-order terms due to the radia
need to be taken into account.

For large velocitiesj2@a2,h2, the total emitted power
becomes

FIG. 8. Time evolution ofh for the PDE~solid line! and the
adiabatic equations~dashed line! for the positionsa, b, andc indi-
cated in Fig. 7 corresponding to initial velocitiesj050,0.25, and
0.3, respectively. The values of the parameters area51, e50.1 and
the initial conditions areh050.5, z0510p.
d
ry.
ar
P58p3e2j4
1

Aaj2h2 F 1

cosh2@p~a22Aaj2h2!4h#
2

1

cosh2@p~a12Aaj2h2!4h#
G . ~36!

Notice that whenaj@h2, the maximum of emission occurs fora'u4ju, which is the soliton velocity. This is the so-calle
phase-resonant case found by Scharf and Bishop@6#. We obtain here their estimate directly from inverse scattering theo

The calculations can also be done for a linear periodic potentialesinaxu(x,t) and the total emitted power has a very simil
expression to the one above
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Plinear5
p3e2

8~aj!2
1

Aaj2h2 F F2
2 ~l1!

cosh2@p~a22Aaj2h2!/4h#
2

F2
2 ~l2!

cosh2@p~a12Aaj2h2!/4h#
G , ~37!

whereF252hD(D2a)1h3@2113(D2 /h)2#.
The conclusions that were drawn from the case of modulated dispersion hold in this case too. Therefore the n

results of Scharf and Bishop@6# can be interpreted in the light of the above resonance condition. When the variations
potential are large compared to the soliton width, i.e.,a,h a large velocityj is necessary for the soliton to emit radiation. F
a small velocity no radiation is emitted so that the medium can be considered as transparent for the soliton. Th
agreement with the results of Kivsharet al. @16# which were obtained by taking forV a sum ofd functions and assuming
independent scattering. In the casea.h, the so-called ‘‘dressed’’ soliton will emit radiation for very small velocities. On
whenj50 will there be no emitted radiation.

We will now proceed to show that for large velocitiesj the soliton will experience exponential radiative damping as w
evidenced in some early numerical experiments by one of the authors@17#. In the case of a linear potential the number
quantaN5*2`

1`uuu2dx is conserved so that we can use the following formula from inverse scattering theory@11#:

N54h1E
2`

1`

ub~l!u2dl,

whereb is the Jost reflection coefficient. Differentiating this expression with respect to time yields

05
dN

dt
54

dh

dt
1E

2`

1`

P~l!dl.

Using expression~37! for the total emitted power and the expression ofF2 we obtain the exponential damping of the solito
amplitude

dh

dt
52h

p3e2

32~aj!2
1

Aaj2h2 F G2
2 ~l1!

cosh2@p~a22Aaj2h2!/4h#
2

G2
2 ~l2!

cosh2@p~a12Aaj2h2!/4h#
G ,
so
e
-
n
in
ot
e
n
.
b
1

f-
u
tim
in
t
th

i
t
lin

the
ed

n-
whereG252D(D2a)1h3@2113(D2/h)
2#.

The power emitted in the form of linear waves is al
important for the study of an array of planar waveguid
where the parameterj is the tangent of the angle of propa
gation in the (z,x) plane. We will show in the next sectio
that such a system can be reduced to a perturbed nonl
Schrödinger equation where the perturbation consists of b
a space-dependent dispersion and a linear potential. Th
fore for that problem the influence of radiation is importa
and can lead to a resonant distorsion of the spatial soliton
detailed knowledge of this damping mechanism could ena
one to shift the beam from one guide to another. Figure
shows the soliton profile for three different timest510 ~top!,
20 ~middle!, and 30~bottom! for the resonant case. The di
ference between the solution given by the adiabatic eq
tions as a dashed line and the PDE solution grows as
increases. Fort530 the pulse given by the PDE is trapped
a potential well, while the adiabatic equations predict tha
keeps moving left. Thus the pulse has been shifted from
positionx556 to x545.

V. APPLICATION TO THE PROPAGATION OF SPATIAL
SOLITONS IN ARRAYS OF OPTICAL WAVEGUIDES

WITH VARIABLE COUPLING

The problem of the propagation of an envelope soliton
a medium with a space-dependent dispersion studied in
previous sections has an important application in the non
s

ear
h
re-
t
A
le
0

a-
e

it
e

n
he
-

ear optics of waveguides. Let us consider the problem of
propagation of a soliton in an array of tunnel-coupl
waveguides with a variable coupling@5,19#. The correspond-
ing system of equations has the form

2 iunz5Vn,n11un111Vn21,nun211uunu2un . ~38!

In the continuum limit it is possible to use the Taylor expa
sion forun andVn,m :

un615u~x!6hux1
h2

2
uxx1•••,

Vn,n615VS x6
h

2D5V~x!6
h

2
Vx1

h2

8
Vxx1•••.

Substituting these expressions into Eq.~38!, we obtain for
u(x,z) the equation

2 iuz52Vu1h2~Vxux1
1
4 Vxxu1Vuxx!1uuu2u1O~h4!.

~39!

One can define a reduced spatial variabley5x/hA2, use the
phase shiftv5→e24izu , and rescale the variablez by 1

2 to
obtain the reduced equation

ivz1vyy12uvu2v5~12V!vyy2Vyvy2
1
4 Vyyv

24~V21!v. ~40!
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Notice that this system can be derived from the Hamilton
density

H5Vuvyu22uvu42@Vyy14~V21!#uvu2. ~41!

In the case of a periodic modulation of the coupling betwe
the waveguides within the array,V(x)511esin(ax), Eq.
~40! becomes

ivz1vyy12uvu2v52e~42a2/4!sin~ay!v2eacos~ay!vy

2esin~ay!uyy , ~42!

wherea5ahA2.
The adiabatic equations for the soliton parameters can

derived by combining Eqs.~5!–~8! with the ones for a linear
potential. The different contributions to the evolution equ
tion of the amplitude cancel out so that

dh

dt
50. ~43!

The amplitude of the soliton is not changed. This reflects
fact that the number of quanta*2`

1`uuu2dx is conserved by
Eq. ~39!. However, in the case of a chirped beam@3# oscil-
lations of the amplitude and width will appear.

For the velocity~which corresponds to the angle of prop
gation! we obtain

dj

dt
5

epa2cos~az!

2hsinh~pa/4h! S h2

3
1

a2

48
1j221D . ~44!

For the soliton centerz we obtain the equation

dz

dt
524jF11

epasin~az!

4hsinh~pa/4h!G . ~45!

The fixed points associated to these equations are
(e,1)

FIG. 9. Time evolution ofh for the PDE~solid line! and the
adiabatic equations~dashed line! for the positionsd, b, ande indi-
cated in Fig. 7 corresponding to initial amplitudesh50.45, 0.5,
and 0.55, respectively. The values of the parameters area51,
e50.1 and the initial conditions arej050.25,z0510p.
n

n

be

-

e

or

j50 and az56
p

2
12np,

except if h2/31a2/4851. It can be seen that the fixe
pointsaz5 p/2 (2p/2) are stable ifh2/31a2/4821,0
(.0). Figure 11 shows the phase portraits (az,j) obtained
for Eqs. ~44! and ~45! in the caseh51.4 ~top! and h52
~bottom! where the orbits are given just as in the case of
pendulum by the level curves of the Hamiltonian

H~z,j!516hj21
e4pasinaz

sinh~pa/4h! Fh2

3
1

a2

48
1j221G .

~46!

One clearly sees that the fixed point (az5p/2,j50),
which was a center forh51.4, becomes a hyperboli

FIG. 10. Profile ofuuu as a function ofx for different times
t510 ~top!, t520 ~middle!, t530 ~bottom! for the resonant case
the PDE solution is given by the solid line and the solution given
the adiabatic Eqs.~5!–~8! given by the dashed line. The values
the parameters area52.5, e50.1 and the initial conditions are
h050.5, z0518p, and j050.1. V(x) has been drawn as a long
dashed line.

FIG. 11. Phase portraits (az,j) for h51.4 ~top! andh52 ~bot-
tom! for the adiabatic equations~44!–~45! for an array of
waveguides. The values of the other parameters aree50.1 and
a51.
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fixed point for h52. Notice that when
h5h*5A3(12a2/48) (az,j50) is a fixed point for any
value of z so that the solitons of amplitude parameterh*
propagate without being affected by the modulation of
waveguide coupling.

The property of the fixed points described above sugg
using such a device as a filter to separate pulses of diffe
amplitudes because the solitons for whichh,h* get trapped
by the fixed points corresponding toaz5p/2 whereas the
pulses for whichh.h* are attracted to the fixed points co
responding toaz52p/2. It would be then possible to us
the device as a switch by sending along the chan
az5p/2 a small pulse so that a pulse that was origina
trapped would be shifted to the neighboring channel co
sponding to the other type of fixed point.

From the results of Sec. IV it is possible to estimate
condition for resonant decay of the spatial soliton. The in
e
o

t

e

ts
nt

el

-

e
i-

dent angle is sinci52(j/b) whereb is the propagation index
Using the condition for resonant emissionaj5h2 we find
the value of the incident angle leading to a resonant dis
tion of the beam in the array of waveguides with a perio
cally varying coupling

c i5asin~2h2/ba!.

In the case of a random modulation of the coupling b
tween the waveguides one can estimate the distribution fu
tion for the effective random potential relief acting on th
soliton in motion. For this we use the technique introduced
@20#.

First notice that Eq.~39! can be derived from the Hamil
tonian
H5E
2`

1` H 2Vuuu21
1

2
uuu41

h2

2 F12Vx~ uuu2!x2~Vu* !xux2~Vu!xux* G J dx. ~47!

Writing V(x)5V01V1(x), one gets

H5E
2`

1` H 2Vuuu21
1

2
uuu42

h2

2
V0uuxu21

h2

2 F12V1x~ uuu2!x2~V1u* !xux2~V1u!xux* G J dx ~48!

so that for an inhomogeneous array the addition to the energy due to the random modulation is

DH5E
2`

1`S 2V12
h2

4
V1xxD uuu2dx2

h2

2 E2`

1`

@~V1u* !xux1~V1u!xux* #dx, ~49!
e

which reduces by integration by parts to

DH5E
2`

1`

V1S 2uuu22
h2

2
@ uuxu22Re~uxxu* !# Ddx.

~50!

Let us now find the distribution function for the effectiv
random potential relief acting on the soliton in motion. F
this we use the technique introduced in@20# for the sine-
Gordon equation. In the case of an inhomogeneous array
addition to the energy due to the random modulation is

DH5E
2`

`

V1S 2uuu22
h2

2
@ uuxu22Re~u* uxx!# Ddx. ~51!

We must find the distribution functionP(DH) where

P~DH !5^d„DH2DH~x!…&. ~52!

For the calculation ofP we introduceDH(x), defined as

DH~x!5E
2`

x

f ~x!V1~x!dx,

where
r

he

f ~x!52uuu22
h2

2
@ uuxu22Re~u* uxx!#, ~53!

which satisfies the following equation:

]DH~x!

]x
5F~x!5 f ~x!V~x!. ~54!

To obtain the equation forP(DH,x) we will differentiate
Eq. ~52! by x and get

]P

]x
52 K ]DH~x!

]x

]

]DH
d„DH2DH~x!…L

52 f ~x!
]

]DH
^V~x!d„DH2DH~x!…&. ~55!

Here we have the correlator̂ V(x)d„DH2DH(x)…&
[^V(x)d(DH,x)&. This correlator can be decoupled by th
Furutzu-Novikov formula@14#

^V~x!d~DH,x!&5E
0

x

dx8^V~x!V~x8!&K ]

]V
d~DH,x!L .

~56!

AssumingV is d correlated we obtain
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^V~x!d~DH,x!&5s2K ]

]V
d~DH,x!L . ~57!

Here we should note that

K ]

]V
d~DH,x!L 5 K ]

]DH
d~DH,x!

]DH

]V L ~58!

5 f ~x!
]

]DH
^d~DH,x!&

5 f ~x!
]

]DH
^P~DH,x!&. ~59!

Using Eqs.~57! and ~59! we obtain finally the equation fo
the distribution functionP(DH,x):

]P~DH,x!

]x
5sv

2f 2~x!
]2

]DH2P~DH,x!. ~60!

Its solution has the form

P~DH,x!5
1

A2psv
2G~x!

expS 2
DH2

2sv
2G~x! D ,

G~x!5E
2`

x

f 2~x8!dx8. ~61!

Therefore the additional energyDH added to the energy o
the soliton because of the presence of the perturbation te
induced by the array has a Gaussian distribution of mea
and standard deviationeAG(h,j,`), where

G~h,j,`!5E
2`

`

f 2~x8!dx85
128

3
h3F128j2116j4

2
16

5
h2~124j2!1

96

35
h4G ,

~62!

where the parameterh has been eliminated by the redefin
tion of x.

The quantityG is a measure of the energy that a solit
can have given the parameters of the potential. For largh
and smallj the pinning potential is
. E

n

s
0

Up5AG~h,j,`!'
8A2h7/2

A3
. ~63!

So in a random medium with a small correlation length, t
soliton is trapped by an effective potential that has a typi
scale of the order of the soliton width.

VI. CONCLUSION

We have performed an analytical and numerical inve
gation of the dynamics of an envelope soliton in a medi
with spatially variable dispersion. For a periodic modulati
the PDE solution agrees well with the evolution given by t
adiabatic equations for the soliton parameters for small
locities. We also present preliminary results in the rand
case.

When the velocity is increased the soliton emits line
waves and we calculate the density of emission. We find
there is a resonance whenaj2h250 and have investigated
the parameter space around that point. Here it is importan
recognize the practical usefulness of the inverse scatte
theory because this condition cannot be easily obtained f
physical considerations. Note also that our study, which
valid both for a linear potential and in the space-depend
dispersion case, shows that linear waves are emitted as
asaj2h2 is positive.

We have applied this study to the problem of propagat
of spatial solitons in arrays of waveguides with a period
variation of the coupling and find that in the continuum lim
the problem reduces to an NLS equation with a Hamilton
perturbation. We show that the amplitude of the pulse
conserved and that large~small! amplitude pulses are at
tracted by the maxima~minima! of the coupling potential,
enabling the device to act as a filter or a coupler. Finally
calculate the Gaussian distribution function for the additio
energy of the solitons due to the array.
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